We propose Social Diffusion, a novel method for shortterm and long-term forecasting of the motion of multiple persons as well as their social interactions. Jointly forecasting motions for multiple persons involved in social activities is inherently a challenging...
Our study reveals new theoretical insights into over-smoothing and feature over-correlation in deep graph neural networks. We show the prevalence of invariant subspaces, demonstrating a fixed relative behavior that is unaffected by feature transformations. Our work...
Over-squashing and over-smoothing are two critical issues, that limit the capabilities of graph neural networks (GNNs). While over-smoothing eliminates the differences between nodes making them indistinguishable, over-squashing refers to the inability of GNNs to...
Groundbreaking language-vision architectures like CLIP and DALL-E proved the utility of training on large amounts of noisy image-text data, without relying on expensive accurate labels used in standard vision unimodal supervised learning. The resulting models showed...
Multimodal datasets are a critical component in recent breakthroughs such as CLIP, Stable Diffusion and GPT-4, yet their design does not receive the same research attention as model architectures or training algorithms. To address this shortcoming in the machine...
Fourier PlenOctrees have shown to be an efficient representation for real-time rendering of dynamic Neural Radiance Fields (NeRF). Despite its many advantages, this method suffers from artifacts introduced by the involved compression when combining it with recent...